COMPARISON BETWEEN TWO TYPES OF TRIPOD JOINTS

Nicolae-Doru STĂNESCU ${ }^{1 *}$, Nicolae PANDREA ${ }^{2}$, Dinel POPA ${ }^{3}$
${ }^{1}$ University of Pitesti, Faculty of Mechanics and Technology, Department of Manufacturing and Industrial Management; ${ }^{2}$ University of Pitesti, Faculty of Mechanics and Technology; ${ }^{3}$ University of Pitesti, Faculty of Mechanics and Technology, Department of Automotive and Transportations

Article history:
Received: 22.01.2016; Accepted: 15.02.2016.

Abstract

In the present paper we make a comparison between two types of tripod kinematic pairs. The first type is characterized by the fact that the contact takes place on three straight lines, while on the second type the contact takes place on three identical curves. For each case we determine the equations of the projection curve and in a numerical case we perform a comparison between the results.

Keywords: tripod kinematic pair, projection curve

INTRODUCTION

We denote by α_{i}, β_{i}, and $\gamma_{i}, i=1,2.3$, the components of the rotational matrix and by $[\mathbf{A}]$, $[\psi],[\gamma],[\varphi]$ the matrices

$$
\begin{gather*}
{[\mathbf{T}]=\left[\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\beta_{1} & \beta_{2} & \beta_{3} \\
\gamma_{1} & \gamma_{2} & \gamma_{3}
\end{array}\right],[\psi]=\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right],[\gamma]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \gamma-\sin \gamma \\
0 & \sin \gamma & \cos \gamma
\end{array}\right],} \tag{1}\\
{[\varphi]=\left[\begin{array}{ccc}
\cos \varphi-\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right] .}
\end{gather*}
$$

It results the matrix relation [1]

$$
\begin{equation*}
[\mathbf{T}]=[\psi I \gamma \| \varphi], \tag{2}
\end{equation*}
$$

with the aid of which we get the expressions of the director cosines as function of Euler's angles.

THE TYPE ONE TRIPOD KINEMATIC PAIR

The type one tripod kinematic pair is presented in Fig. 1.
We denote by $B_{j}, j=1,2,3$, the points at which the straight lines $\left(\Gamma_{j}\right)$, equidistant and parallel to the axis $O_{1} z_{1}$, intersect the perpendicular plan to the axis $O_{1} z_{1}$ and passing through the point O_{1}, and we consider that the axis $O_{1} z_{1}$ is situated in the direction of the straight line $O_{1} B_{1}$ (Fig. 1).
We also make the notations

$$
\begin{equation*}
O_{j} B_{j}=r, B_{j} A_{j}=\lambda_{j}, O_{2} A_{j}=\mu_{j}, j=1,2,3, \tag{3}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
\delta_{j}=\frac{2 \pi}{3}(j-1), j=1,2,3 . \tag{4}
\end{equation*}
$$

\]

Figure 1. The type one tripod kinematic pair
Let $x_{1 j}, y_{1 j}, z_{1 j}$, and $x_{2 j}, y_{2 j}, z_{2 j}$ be the coordinates of the point $A_{j}, j=1,2,3$, relative to the reference systems $O_{1} x_{1} y_{1} z_{1}, O_{2} x_{2} y_{2} z_{2}$, respectively.
Taking into account the expressions

$$
\begin{gather*}
x_{1 j}=r \cos \delta_{j}, y_{1 j}=r \sin \delta_{j}, z_{1 j}=\lambda_{j}, \tag{5}\\
x_{2 j}=\mu_{j} \cos \delta_{j}, y_{2 j}=\mu_{j} \sin \delta_{j}, z_{2 j}=0 \tag{6}
\end{gather*}
$$

and the matrix relation

$$
\left[\begin{array}{l}
x_{1 j} \tag{7}\\
y_{1 j} \\
z_{1 j}
\end{array}\right]=\left[\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right]+\left[\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\beta_{1} & \beta_{2} & \beta_{3} \\
\gamma_{1} & \gamma_{2} & \gamma_{3}
\end{array}\right]\left[\begin{array}{l}
x_{2 j} \\
y_{2 j} \\
z_{2 j}
\end{array}\right],
$$

by eliminating the parameter μ_{j}, we obtain the equalities

$$
\begin{align*}
& \quad \xi\left(\beta_{1} \cos \delta_{j}+\beta_{2} \sin \delta_{j}\right)-\eta\left(\alpha_{1} \cos \delta_{j}+\alpha_{2} \sin \delta_{j}\right) \\
& -r\left[\beta_{1} \cos ^{2} \delta_{j}+\left(\beta_{2}-\alpha_{1}\right) \sin \delta_{j} \cos \delta_{j}-\alpha_{2} \sin \delta_{j}\right]=0, j=1,2,3 \tag{8}
\end{align*}
$$

Adding the relations (8) and taking into account the well known trigonometric relations

$$
\begin{gather*}
\sum_{i=1}^{3} \cos \delta_{j}=\sum_{i=1}^{3} \sin \delta_{j}=\sum_{i=1}^{3} \sin \delta_{j} \cos \delta_{j}=0, \tag{9}\\
\sum_{i=1}^{3} \cos ^{2} \delta_{j}=\sum_{i=1}^{3} \sin ^{2} \delta_{j}=\frac{3}{2}, \tag{10}
\end{gather*}
$$

we obtain the essential condition of the first type tripod kinematic pair [1]

$$
\begin{equation*}
\beta_{1}=\alpha_{2} ; \tag{11}
\end{equation*}
$$

using the Euler angles, the previous relation takes the form

$$
\begin{equation*}
\psi=-\varphi . \tag{12}
\end{equation*}
$$

Using the relations (11), (12), (1), (2), (7), and (8), we also obtain the expressions

$$
\begin{equation*}
\xi=\frac{r(1-\cos \gamma)}{2 \cos \gamma}[\cos (3 \varphi) \cos \varphi+\cos \gamma \sin (3 \varphi) \sin \varphi], \tag{13}
\end{equation*}
$$

$$
\begin{gather*}
\eta=\frac{r(1-\cos \gamma)}{2 \cos \gamma}[-\cos (3 \varphi) \sin \varphi+\cos \gamma \sin (3 \varphi) \cos \varphi], \tag{14}\\
\mu_{j}=\frac{r \cos \delta_{j}-\xi}{\alpha_{1} \cos \delta_{j}+\alpha_{2} \sin \delta_{j}}, \tag{15}\\
\lambda_{j}=\zeta+\left(\gamma_{1} \cos \delta_{j}+\gamma_{2} \sin \delta_{j}\right) \mu_{j}, \tag{16}
\end{gather*}
$$

in which ζ, φ, and γ are independent parameters.
In the case of the tripod joints used in practice, the variation of the angle γ during the joint's work is a small one; hence, we may realize a good image of the joint's work by considering that the angle γ is constant.
In this situation, when $\gamma=$ const, the projection of the curve described by the point O_{2} onto the plan $O_{1} x_{1} y_{1}$ (Fig. 1) is curve given by the equations (13) and (14).
For instance, when $\gamma=46^{\circ}, r=22.85 \mathrm{~mm}$, the curve has the representation given in Figure 2 a), while in the case in which $\gamma=75.5224878 \mathrm{P}(\cos \gamma=0.25)$ and the parameter r remains constant, the curve is captured in Figure $2 b$).

a)

b)

Figure 2. The projection of the curve described by the point O_{2} onto the plan $O_{1} x_{1} y_{1}$
a) case $\gamma=46^{\circ}, r=22.85 \mathrm{~mm}$; b) case $\gamma=75.5224878 \mathrm{P}(\cos \gamma=0.25), r=22.85 \mathrm{~mm}$

From the analysis of the results presented above, it follows that when $\gamma>\arccos \left(\frac{1}{3}\right)$, the point O_{2} comes out of the circle of radius r; since this condition is difficult to be obtained in practice, it results that a first limitation for the angle γ is given by the relation

$$
\begin{equation*}
\gamma<\arccos \left(\frac{1}{3}\right)=70.52288^{\circ} \tag{17}
\end{equation*}
$$

Further on, we calculate the distance s between the points O_{2} and O_{1} (Fig. 1), and we get the following expression

$$
\begin{equation*}
s=\frac{r(1-\cos \gamma)}{2 \cos \gamma} \sqrt{\cos ^{2}(3 \varphi)+\cos ^{2} \gamma \sin ^{2}(3 \varphi)+\zeta^{2}}, \tag{18}
\end{equation*}
$$

the minimum variation of which being when $\zeta=0$.
It follows that for $\gamma \neq 0$, one cannot make a type one tripod joint for which the axes $O_{2} z_{2}$ and $O_{1} z_{1}$ are concurrent, but one can make a pseudo-angular tripod joint for which the distance s
between the points O_{1} and O_{2} has a minimal variation for $\zeta=0$ and, in addition, it verifies the relation

$$
\begin{equation*}
\frac{r(1-\cos \gamma)}{2 \cos \gamma} \leq s \leq \frac{r(1-\cos \gamma)}{2} . \tag{19}
\end{equation*}
$$

From the constructive point of view, the condition of angular joint $(\zeta=0)$ is fulfilled with the aid of a bilateral kinematic pair of sphere-plan type (Figure 3).

Figure 3. Angular first type tripod kinematic pair

THE TYPE TWO TRIPOD KINEMATIC PAIR

The curves $\left(\Gamma_{j}\right), j=1,2,3$, are symmetrically situated in space; it follows that if the curve $\left(\Gamma_{1}\right)$ has the equations

$$
\begin{equation*}
x_{1}=f\left(z_{1}\right), y_{1}=0, \tag{20}
\end{equation*}
$$

in the system $O_{1} x_{1} y_{1} z_{1}$, then the curves $\left(\Gamma_{j}\right), j=1,2,3$, will be described by the equations

$$
\begin{equation*}
x_{1}=f\left(z_{1}\right) \cos \delta_{j}, \quad y_{1}=f\left(z_{1}\right) \sin \delta_{j}, j=1,2,3 . \tag{21}
\end{equation*}
$$

Similarly, for the straight lines $\left(\Delta_{j}\right), j=1,2,3$, one obtains the following equations

$$
\begin{equation*}
y_{2}=x_{2} \tan \delta_{j}, z_{2}=0 . \tag{22}
\end{equation*}
$$

From the above discussion it results that, in the system $O_{1} x_{1} y_{1} z_{1}$, the coordinates of the point $A_{j}, j=1,2,3$, are

$$
\begin{equation*}
x_{1 j}=f\left(z_{1 j}\right) \cos \delta_{j}, y_{1 j}=f\left(z_{1 j}\right) \sin \delta_{j}, z_{1 j}=z_{1 j}, \tag{23}
\end{equation*}
$$

while in the system $O_{2} x_{2} y_{2} z_{2}$ the coordinates are

$$
\begin{equation*}
x_{2 j}=x_{2 j}, y_{2 j}=x_{2 j} \tan \delta_{j}, z_{2 j}=0 ; \tag{24}
\end{equation*}
$$

taking into account the matrix relation of transformation

$$
\left[\begin{array}{l}
x_{1 j} \tag{25}\\
y_{1 j} \\
z_{1 j}
\end{array}\right]=\left[\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right]+\left[\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\beta_{1} & \beta_{2} & \beta_{3} \\
\gamma_{1} & \gamma_{2} & \gamma_{3}
\end{array}\right]\left[\begin{array}{c}
x_{2 j} \\
x_{2 j} \tan \delta_{j} \\
0
\end{array}\right],
$$

one gets the following expressions

$$
\begin{gather*}
f\left(z_{1 j}\right) \cos \delta_{j}=\xi+\left(\alpha_{1}+\alpha_{2} \tan \delta_{j}\right) x_{2 j}, f\left(z_{1 j}\right) \sin \delta_{j}=\eta+\left(\beta_{1}+\beta_{2} \tan \delta_{j}\right) x_{2 j}, \\
z_{1 j}=\zeta+\left(\gamma_{1}+\gamma_{2} \tan \delta_{j}\right) x_{2 j} . \tag{26}
\end{gather*}
$$

Eliminating the parameters $x_{2 j}$ and $z_{1 j}$ from the relations (26) and denoting

$$
\begin{gather*}
U_{j}=\xi\left(\beta_{1} \cos \delta_{j}+\beta_{2} \sin \delta_{j}\right)-\eta\left(\alpha_{1} \cos \delta_{j}+\alpha_{2} \sin \delta_{j}\right), \tag{27}\\
V_{j}=\left(\beta_{2}-\alpha_{1}\right) \sin \delta_{j} \cos \delta_{j}+\beta_{1} \cos ^{2} \delta_{j}-\alpha_{2} \sin ^{2} \delta_{j}, \tag{28}\\
W_{j}=\left(\xi \sin \delta_{j}-\eta \cos \delta_{j}\right)\left(\gamma_{1} \cos \delta_{j}+\gamma_{2} \sin \delta_{j}\right) \tag{29}
\end{gather*}
$$

we obtain the relations

$$
\begin{equation*}
V_{j} f\left(\xi+\frac{W_{j}}{V_{j}}\right)-U_{j}=0, j=1,2,3 . \tag{30}
\end{equation*}
$$

The three relations (30) represent the equations of the type two tripod kinematic pairs.
If the curves $\left(\Gamma_{j}\right), j=1,2,3$, are straight lines, then $f\left(z_{1}\right)=r$, and the relations (30) may be written in the form

$$
\begin{equation*}
r V_{j}-U_{j}=0, j=1,2,3 ; \tag{31}
\end{equation*}
$$

by addition of these relations, one finds again the condition (11).
In the case when the joint is an angular one, then, putting $\zeta=0$ and using Euler's angles, for imposed values for the angle γ, from the system (30), one may determine the parameters ψ, ξ, and η as functions of the angle φ.
In the practical cases, the function f may be defined as a third degree polynomial function in the form

$$
\begin{equation*}
f\left(z_{1}\right)=r+\lambda_{1}^{*} z_{1}+\lambda_{2}^{*} z_{1}^{2}+\lambda_{3}^{*} z_{1}^{3} \tag{32}
\end{equation*}
$$

and the relations (30) become

$$
\begin{equation*}
-U_{j} V_{j}^{2}+r V_{j}^{3}+\lambda_{1}^{*} V_{j}^{2} W_{j}+\lambda_{2}^{*} V_{j} W_{j}^{2}+\lambda_{3}^{*} W_{j}^{3}=0 . \tag{33}
\end{equation*}
$$

In the numerical cases, the system of equations (33) may be solved with the aid of the Newton-Raphson method [2] and using a calculation program.
Considering the numerical data $\gamma=46^{0}, \quad r=22.85 \mathrm{~mm}, \lambda_{1}^{*}=-0.0124, \lambda_{2}^{*}=-0.00083$, $\lambda_{3}^{*}=-0.000018$, the parameters ξ, η, and ψ are determined as functions of the angle φ, as well as the coordinates of the point O_{2} in the two reference systems. These results are compared with those ones obtained for the type one tripod kinematic pair for which γ and $r=22.85 \mathrm{~mm}$; the corresponding diagrams are drawn in Figure 4 and Figure 5.
We find that that for the curve of the type two tripod kinematic pair, drawn in Figure. 4, the distance $\rho=\sqrt{\xi^{2}+\eta^{2}}$ has closer extreme values than in the case of the curve corresponding to the type one tripod kinematic pair.
Denoting by $\Delta \psi$ the difference between the values of the angle ψ which correspond to the type two, and type one tripod kinematic pairs, respectively, one obtains the graphic representation in Figure 5, from which it follows that this difference is a periodical one and, in addition, it has a small maximum value.

Figure 4. The projection of the curve described by the point O_{2} onto the plan $O_{1} x_{1} y_{1}$ in the case of first type tripod kinematic pair (green) and second type kinematic pair (blue).

Figure 5. The difference between the angles ψ corresponding to the two types of kinematic pairs.

CONCLUSIONS

In this paper we performed a comparison between two types of tripod kinematic pairs at which the contact takes place on straight lines or some curves. The essential conditions are obtained in each case. In the first situation the curve may have different shapes, all of them being hypocycloids. The discuss may be generalized for other types of tripod kinematic pairs.

REFERENCES

[1] Pandrea, N., Popa, D., Stănescu, N.-D, Classical and Modern Approaches in the Theory of Mechanisms, John Wiley \& Sons, Chichester, UK, 2016.
[2] Teodorescu, P., P., Stănescu, N.-D, Pandrea, N., Numerical Analysis with Applications in Mechanics and Engineering, John Wiley \& Sons, Hoboken, USA, 2013.

[^0]: * Corresponding author. Email: doru.stanescu@upit.ro

