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Abstract. This paper is a dynamic analysis of one of the many variants of mechanical torque converter designed 
by the eminent romanian inventor George Constantinesco. The analyzed model is composed of nine-bar linkage 
that transmit motion from the primary motor to the output shaft through one-way clutches. In the first stage we 
are determined the equations of motion in matrix form and by their numerical solution we are indicate the main 
features of the torque converter. Analysis of dynamic stability of mechanical transmission is made through the 
linear analysis with Bode diagrams. Simulation of transmission operation is performed with AMESim. 
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INTRODUCTION 
 
The analyzed mechanism is a planar nine-bar linkage arranged in three closed loops, shown in 
Fig. 1. In Fig. 2, shows the simulation model of torque converter developed by AMESim 
program. It is a two degree of freedom mechanism, the degrees being the crank angle 휑  and 
the angular displacements of the links 6 and 8, 휑  and 휑  respectively. The bar system 5, 6, 7 
and 8with the one-way clutches 9 and 10, form a unidirectional mechanism that rotates the 
output shaft 11 in a certain sense. The imposed external forces are the driving torque 푇 , 
provided by a drive motor at constant speed and the loading torques 푇 , 푇  acting on the bars 
6, 8 respectively. 
 

 
Figure 1. The G. Constantinesco’s torque converter diagram. 
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Figure 2. Simulation scheme of torque converter modeled by AMESim  

 
EQUATIONS OF MOTION 
 
In relation to the oxy reference system, the coordinates of the joints A, B, C, K, D, G and 
center of mass M are given by relations: 

푥 = 푙 cos휑                                                                   (1) 
푦 = 푙 sin휑                                                                   (2) 

푥 = 푥 + 푙 cos휑                                                               (3) 
푦 = 푦 + 푙 sin 휑                                                               (4) 

푥 = 푥 + 푙 cos휑 = 푥 − 푙 cos휑                                                 (5) 
푦 = 푦 + 푙 sin휑 = 푦 − 푙 sin휑                                                 (6) 

푥 = 푥 − 푙 cos휑                                                             (7) 
푦 = 푦 − 푙 sin 휑                                                             (8) 
푥 = 푥 + 푙 cos휑                                                             (9) 
푦 = 푦 + 푙 sin휑                                                           (10) 

푥 = 푥 + 푙 cos휑 = 푥 + 푙 cos휑                                                (11) 
푦 = 푦 + 푙 sin 휑 = 푦 + 푙 sin 휑                                                (12) 
푥 = 푥 + 푙 cos휑 = 푥 + 푙 cos휑                                                (13) 
푦 = 푦 + 푙 sin 휑 = 푦 + 푙 sin 휑                                                 (14) 

To simplify writing , in what follows will use the following notation 

sin 휑 = 푠 ; cos휑 = 푐    (푖 = 1…8)                                               (15) 

The kinematics may be defined by writing the constraint equations along and perpendicular to 
the axe ox. 



푓 = 푙 푐 + 푙 푐 + 푙 푐 + 푙 푐 − 푥 = 0                                          (16) 
푓 = 푙 푠 + 푙 푠 + 푙 푠 + 푙 푠 − 푦 = 0                                          (17) 
푓 = 푙 푐 + 푙 푐 + 푙 푐 + 푙 푐 − 푙 푐 − 푥 = 0                                 (18) 
푓 = 푙 푠 + 푙 푠 + 푙 푠 + 푙 푠 − 푙 푠 − 푦 = 0                                 (19) 
푓 = 푙 푐 + 푙 푐 + 푙 푐 + 푙 푐 − 푙 푐 − 푥 = 0                                  (20) 
푓 = 푙 푠 + 푙 푠 + 푙 푠 + 푙 푠 − 푙 푠 − 푦 = 0                                  (21) 

In adition, in the case of a constant speed input 휔  of the crank, a further equation 

푓 = 휑 −휔 푡 = 0                                                           (22) 

is required. The above equations may be represented in suffix notation as 

푓 (휑 ,휑 ,휑 ,휑 , 휑 , 휑 , 휑 , 휑 ) = 0                                             (23) 

where 푗 = 1…7. 
The constraint equations expressed in terms of velocities may be be derived from (23) and 
written in suffix notation as, 

푉 (휑 , 휑 , 휑 , 휑 ,휑 ,휑 ,휑 ,휑 , 휑̇ , 휑̇ , 휑̇ , 휑̇ , 휑̇ , 휑̇ , 휑̇ , 휑̇ ) = 0                    (24) 

The equations of motion are derived using the Lagrangian multipliers method. This may be 
stated as follows [1,2]: 

̇
− = 푄 + ∑ 휆                                                     (25) 

where E is the total kinetic energy of the system, 푞  and 푞̇  are the generalised coordinates and 
velocities, 푄  the generalised forces including conservative and nonconservative effects, 휆  
the Lagrangian multipliers and 푓  the constraint equations. 
The generalised forces 푄  may be written in the form  

푄 = ∑ 푚 푔⃗ ∙ ⃗ + 푇⃗ ∙ ⃗
                                                    (26) 

where 푚  represents the masses, 푔⃗ the gravitational vector, 푟⃗  the coordinate vector of the 

point of application of gravitational forces and  푇⃗  the vector of torques. 
Let the generalised coordinates 푞  be 휑 , 휑 , 휑 , 휑 , 휑 , 휑 , 휑  and 휑 . Now in order to obtain 
the kinetic energy in terms of these coordinates the velocities of the centres of masses must be 
found. These can be obtained by writting the x and y coordinates of the centres of masses and 
taking the first derivative. In this case, for 퐶 = 푂;	퐶 = 퐴;	퐶 = 퐾;	퐶 = 푀;	퐶 = 퐷;	퐶 =
퐸;	퐶 = 퐺;	퐶 = 퐸 is obtained:  

푣 = 0                                                         (27) 
푣 = 푣 = 푙 휑̇                                                         (28) 
푣 = 푣 = 푙 휑̇                                                    (29) 
푣 = 푣 = 푙 휑̇                                                      (30) 
푣 = 푣 = 푙 휑̇                                                      (31) 

푣 = 푣 = 0                                                   (32) 
푣 = 푣 = 푙 휑̇                                                    (33) 
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Hence the total kinetic energy of the machanism may be expressed as: 

퐸 = 퐽 ̇ + 퐽 ̇ + 퐽 ̇ + 퐽 ̇ + 퐽 ̇ + 퐽 ̇ + 퐽 ̇ + 퐽 ̇ + ̇ + ̇ +
̇ +	+ ̇ + ̇                              

                                                                                                 (34) 
Based on notations 푞 = 휑 ;	푞̇ = 휑̇ 	  (푖 = 1…8), we obtain                                                     

̇
− = (퐽 + 푚 푙 )휑̈                                                   (35) 

⋮ 

̇
− = (퐽 +푚 푙 )휑̈                                                   (36) 

The generalized forces 푄  are given by the following relationship 

푄 = 푇 − (푚 +푚 )푔푙 푐                                                      (37) 
⋮ 

푄 = −푚 푔푙 푐 − 푇                                                 (38) 

The bars 6 and 8 transmit to the output shaft movement through two one-way clutch, so that 
they are charged under load only when rotating counterclockwise. 

푇 = 푇 	푖푓	(휑̇ − 휑̇ ) ≥ 0
0	푖푓	(휑̇ − 휑̇ ) < 0

�                                           (39)	

푇 = 0	푖푓	(휑̇ − 휑̇ ) ≥ 0
푇 		푖푓	(휑̇ − 휑̇ ) < 0

�                                       (40) 

where  
푇 = 푇 + 퐽 휑̈
휑̇ = 푚푎푥(휑̇ , 휑̇ )

�                                      (41) 

The terms of  the type ∑ 휆  are shown in the following relationships: 

∑ 휆 =− 휆 푙 푠 + 휆 푙 푐 − 휆 푙 푠 + 휆 푙 푐 − 휆 푙 푠 + 휆 푙 푐 + 휆         (42) 

⋮ 
∑ 휆 =휆 푙 푠 − 휆 푙 푐                                         (43) 

The equations of motion, determined by Lagrange multipliers can be written as: 

0 = 푇 − (푚 +푚 )푔푙 푐 + 휆 푙 푠 − 휆 푙 푐 + 휆 푙 푠 − 휆 푙 푐 + 휆 푙 푠 − 휆 푙 푐 − 휆     
(44) 

퐽 휑̈ = −푚 푔푙 푐 + 휆 푙 푠 − 휆 푙 푐 + 휆 푙 푠 − 휆 푙 푐 + 휆 푙 푠 − 휆 푙 푐                   (45) 
퐽 휑̈ = −푚 푔푙 푐 + 휆 푙 푠 − 휆 푙 푐 + 휆 푙 푠 − 휆 푙 푐 + 휆 푙 푠 − 휆 푙 푐           

(46) 
(퐽 + 푚 푙 +푚 푙 )휑̈ = 푚 푔푙 푐 + 휆 푙 푠 − 휆 푙 푐                          (47) 

퐽 휑̈ = 휆 푙 푠 − 휆 푙 푐                                                  (48) 
(퐽 + 푚 푙 )휑̈ = −푚 푔푙 푐 − 푇 −휆 푙 푠 + 휆 푙 푐                             (49) 

퐽 휑̈ = 휆 푙 푠 − 휆 푙 푐                                             (50) 
(퐽 + 푚 푙 )휑̈ = −푚 푔푙 푐 − 푇 − 휆 푙 푠 + 휆 푙 푐                          (51) 



Equations (44) through to (51) are second order non-linear differential equations. Together 
with the following six equations which are obtained by taking the second derivatives of 
constraint equations (16) through to (21)  they may be solved for 
휑̈ , 휑̈ , 휑̈ , 휑̈ , 휑̈ , 휑̈ , 휑̈ , 휆 , 휆 , 휆 , 휆 , 휆 , 휆  and 휆 . 

 = 0   (푗 = 1…6)                                                             (52) 

With notations 

푉 = [휑̈ 휑̈ 휑̈ 휑̈ 휑̈ 휑̈ 휑̈ 휆 휆 휆 휆 휆 휆 휆 ]               (53) 

the equations (44) ... (52) may be written in the following matrix form 

퐴푉 = 퐵                                                  (54) 

If A is a non singular matrix, from the above equation is obtained 

푉 = 퐴 퐵                                                                    (55) 

where 

V = 퐴 , 퐵    (푖 = 1…14; 	푗 = 1…14)                                     (56) 

or, more expressive 

푉 = 퐶 퐵                                                     (57) 

From the above equations may be obtained the following relationships 

휑̈ = 퐶 , 퐵 				
휆 = 퐶 , 퐵 		

� 	(푚 = 1…7)                                       (58) 

from where we can easily calculate the terms 휆 . 
To calculate the angular positions and velocities of the bars, we can use the following notation  
휑 = 푦 ;	휑̇ = 푦 ; 휑 = 푦 ;	휑̇ = 푦 ; 휑 = 푦 ;	휑̇ = 푦 ; 휑 = 푦 ;	휑̇ = 푦 ; 휑 =
푦 ;	휑̇ = 푦 ; 
휑 = 푦 ;	휑̇ = 푦 ; 휑 = 푦 ;	휑̇ = 푦 . The equations of motion derived earlier can be 
expressed in a form equivalent to 

푦̇ = 푔 (푡, 푦 , 푦 ,… , 푦 )
⋮

푦̇ = 푔 (푡, 푦 , 푦 , … , 푦 )
�                                       (59) 

which can be easily solved using Runge - Kutta method. The Runge-Kutta method are one 
step method, i.e. to evaluate 푦 at time 푡 + 훿푡 we only require the information available at 
point 푦 at time 푡. Secondly, they do not require the evaluation of the derivative of the function 
to be integrated.  
Due to the high nonlinearity of the equations of motion, in case to drive with constant speed 
drive, both engine torque and output shaft speed will oscillate around some average values 
that can be determined with relations: 

 푇 = 푚푒푎푛(푇 )                                                             (60) 
 휔 = 푚푒푎푛(휔 )                    (61) 
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CASE STUDY EXAMPLE 
 
For the simulation diagram indicated in Fig. 2 is considered the next practice application with 
the main database entry as follows [3]: 푙 = 0.1푚; 푙 = 0.3푚; 푙 = 0.2푚; 푙 = 0.3푚; 
푙 = 0.6푚; 푙 = 0.9푚; 푙 = 푙 = 0.433푚;	푙 = 푙 = 0.25푚; 푚 = 0.1푘푔; 푚 = 푚 =
0.3푘푔; 푚 = 4푘푔; 푚 = 푚 = 0.4푘푔; 푚 = 푚 = 0.3푘푔; 퐽 = 퐽 = 퐽 = 퐽 = 퐽 = 퐽 =
퐽 = 0.001푘푔 ∙ 푚 ; 퐽 = 2푘푔 ∙ 푚 ; 퐽 = 4푘푔 ∙ 푚 ; 휔 = 1500	푟푒푣/푚푖푛. 
For a variation in time of load torque 푇  imposed by Fig. 3 are obtained the main 
characteristics of mechanical torque converter shown in Fig. 4.  
 

 
Figure 3. Time variation of  the output shaft torque 푇  

 

 
a)                                                                                         b) 

Figure 4. Torque diagrams 푇  and 푇 , depending on the angular velocity of the output shaft 
   

 
STABILITY ANALYSIS 
 
The steady-state sinusoidal frequency-response of a mechanical system is described by the 
phasor transfer function H( jω). A Bode plot is a graph of the magnitude (in dB) or phase of 
the transfer function versus frequency [4].  
Bode plot is one of the most commonly used tools for frequency response. This procedure 
provides relative stability in terms of gain margin and phase margin. Without determining the 
analytical expression of the transfer function of the dynamic system studied, in the following 
we will achieve stability analysis system with AMESim by Linear Analysis tools. In this case 
is selected as control variable the sine wave output signal 휔  and as observer the angular 



speed of inertial body 4, 휑̇ . Linearization time is selected at 50 s. The Bode diagram 
presented as a semi-logarithmic strip plot is shown in Fig. 5.  

 

 

Figure 5. Bode diagrams 
 
CONCLUSIONS 
 
As can be seen from Fig. 4a, the maximum power transmitted through the torque converter is 
located in the average angular velocity of the output shaft. The maximum power transmission 
remains approximately constant over a fairly wide range of variation of the angular velocities 
of the output shaft. The load torque 푇  has a quasi-linear variation inversely proportional to 
the output shaft speed, as shown in Fig. 4b. As we can see in the figure above, phase margin is 
푃푀 = −59.32633 − (−180	[ ]) = 120.67367[ ] and gain margin is  
푀퐺 = 25.52077	[푑푏]. As a result, the system is stable for time 푡 = 50[푠]. 
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