

CONTRIBUTIONS ON THE INFLUENCE OF THE PROCESSING PARAMETERS ON THE B WIDTH OF THE WELDING SEAM TO THE OPEN JOINT OF SHEETS BY FLUXSHIELDED ARC WELDING

Ilarion BANU, Nicolae POPA, Adrian BĂJAN Universitatea din Pitești

Abstract: The paper presents the influence of the processing parameters (the welding arc voltage U_a , the welding current strength I_s , the rate of welding v_s and the feed rate of electrode $v_{e.}$) on the penetration of the welding seam shape coefficient ψ , using the Taguchi method.

Keywords: design process, design solution, functional design, structural design

INTRODUCTION

Studying the welding belts quality requires more and more the Taguchi method [1], [2], [4]. This method offers an instrument to study the welding belt quality loss and accordingly, the shape coefficient ψ =B/h_p (the belt width in the cross section B/the welding belt penetration h_p). The FC chosen control factors are: U_a – the welding arc tension [V]; I_s – the welding intensity [A]; v_s – the progressive speed at welding [cm/min]; v_e – the progressive speed of the electrode wire [cm/min] (see table 1)

TABLE 1		LEVELS					
Control factors	COD	-1	+1				
Natural measures							
The arc tension U _a , [V]	Ua	28	38				
The welding current intensity I_s , [A]	Is	500	650				
The welding speed v _s , [cm/min]	Vs	112	168				
The electrode progressive speed v _e ,[cm/min]	Ve	120	160				

The signal/noise ratio has been computed in the following relation:

$$S/Z = -10 \cdot \log\left(\frac{1}{\overline{\Psi}^2}\right) \times \left(1 + \frac{3s_{\Psi}^2}{\overline{\Psi}^2}\right), \text{ [dB]}$$
[1]

With:

- S Signal;
- Z Noise;
- $\overline{\Psi}$ Arithmetical average of the measured values;

 s_{Ψ} – Standard deviation of the measured values.

The effects [1], [2], [3]:

$$\begin{split} \mathbf{E}_{Ua[-1]} &= \mathbf{M}_{Ua[-1]} - \mathbf{M};\\ \mathbf{E}_{Ua[+1]} &= \mathbf{M}_{Ua[+1]} - \mathbf{M};\\ \mathbf{E}_{Is[-1]} &= \mathbf{M}_{Is[-1]} - \mathbf{M};\\ \mathbf{E}_{Is[+1]} &= \mathbf{M}_{Is[+1]} - \mathbf{M};\\ \mathbf{E}_{Vs[-1]} &= \mathbf{M}_{Vs[-1]} - \mathbf{M};\\ \mathbf{E}_{Vs[+1]} &= \mathbf{M}_{Vs[+1]} - \mathbf{M};\\ \mathbf{E}_{Ve[-1]} &= \mathbf{M}_{Ve[-1]} - \mathbf{M};\\ \mathbf{E}_{Ve[+1]} &= \mathbf{M}_{Ve[+1]} - \mathbf{M}, \end{split}$$

The interactions [1], [2], [3]:

$$\begin{split} I(Ua-Is-) &= (Ua-Is-) - M - E(Ua-) - E(Is-); \\ I(Ua-Is-) &= (Ua-Is-) - M - E(Ua-) - E(Is-); \\ I(Ua-Is+) &= (Ua-Is+) - M - E(Ua-) - E(Is+); \\ I(Ua+Is+) &= (Ua+Is+) - M - E(Ua+) - E(Is+)$$
 a m d, [1]

THE EXPERIMENTAL PLAN CHOICE

This is given in table 1 taking into consideration the conditions established in paper [3]

TABLE 2 With measured values for the shape coefficient ψ (EXPERIMENTAL PLAN L8(2 ⁷)															
The place for samples welding: METABET S.A. PITESTI;															
the place for measuring : the TM laboratory of the TM department of PITESTI UNIVERSIT										ITY					
	The samples material: OL37-2K; the samples thickness: 12 mm;														
	The welding conditions: lease in I; the electrode wire thickness = \emptyset 4mm;														
г	The electrode wire brand S10Mn1; the flux brand FSM 37; the welding tractor $1000 - TV - 4000$;									4000					
-	the control factors values are established in table 1 [3] in conditions established in paper [3]														
	1		sic a			teractic		i iii tut		-	easure			a in paper	[2]
			ment			neruetic	115			111	casur	u vai			
	CO	-	tors	tar y											
I	Ua	Is	Vs	Ve	UaIs=	UaVs=	UaVe=	Nr.1	Nr.2	Nr.3	Nr.4	Nr.5	Mean	Dev. STD	(S/Z) _i
-	°.		15		VsVe	IsVe	IsVs						$\overline{\Psi}_i$	$(s_{\Psi})_i$	[dB]
1	-1	-1	-1	-1	1	1	1	2.66	2.58	2.83	2.87	2.49	2.686	0.161	8.535
1	1	-1	-1	1	-1	-1	1	2.08	1.56	1.9	1.46	1.86	1.772	0.255	4.706
1	-1	1	-1	1	-1	1	-1	1.87	1.86	2.24	1.9	1.92	1.958	0.159	5.750
1	1	1	-1	-1	1	-1	-1	1.4	1.6	1.21	1.66	1.88	1.55	0.255	3.465
1	-1	-1	1	1	1	-1	-1	1.26	1.46	1.29	1.28	1.28	1.314	0.082	2.321
1	1	-1	1	-1	-1	1	-1	1.52	1.4	1.5	1.46	1.58	1.492	0.067	3.449
1	-1	1	1	-1	-1	-1	1	2.29	2.47	2.31	2.36	2.58	2.402	<u>0.121</u>	7.578
1	1	1	1	1	1	1	1	2.03	2.32	1.94	2.11	1.97	2.074	<u>0.152</u>	6.266
	The outpus (answers) general mean														
	General mean: $M = \frac{\sum_{i=1}^{8} \overline{\Psi}_{i}}{8}$; Average ratio $(\frac{S}{Z})_{med} = \frac{\sum_{i=1}^{8} (S/Z)_{i}}{8}$							i	M= =1.906		S/Z= =5.259				
8 $Z'^{med} = 8$															

THE ANALYSIS OF THE SIGNAL/ NOISE EFFECTS AND OF THE EFFECTS ON THE B WIDTH OF THE WELDING BELT AT SEF

TABL	E EFFECTS ON								
THE ADJUSTED TECHNOLOGICAL PARAMETERS The effect on the ratio S/N The effect on the									
The experiments Position number	1 ne ejjeci	on the ratio 5/1	The effect on the measured value						
	Factors	S/N for the measured values	S/N [%] for the measured sizes	The measured	The measured				
1_3_5_7	<i>E(Ua-)=</i>	0.787157	14.96754	sizes 0.184	sizes, [%] 9.653725				
2_4_6_8	E(Ua+)=	-0.78716	-14.9675	-0.184	-9.65373				
1_2_5_6	E(Is-)=	-0.50624	-9.62598	-0.09	-4.72193				
3_4_7_8	E(Is+)=	0.506239	9.625979	0.09	4.721931				
1_2_3_4	E(Vs-)=	0.355354	6.756947	0.0855	4.485834				
5_6_7_8	E(Vs+)=	-0.35535	-6.75695	-0.0855	-4.48583				
1_4_7_8	<i>E(Ve-)=</i>	1.202313	22.8616	0.272	14.27072				
2_3_5_6	E(Ve+)=	-1.20231	-22.8616	-0.272	-14.2707				

On the tables 3 and 4 basis, the diagrams of the control factors influences are shown (see figure 1) for the S/Z ratio values and of the measured values (see figure 2) for the shape coefficient ψ welding belt width. And for the chosen interactions (see table 2) their values are computed using the measured values on the samples made of automatic electrical welding under a flux layer (see tables 2 and 3)

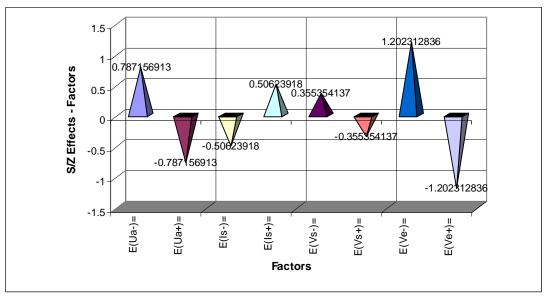


Fig.1 The adjusted technological parameters effect $(U_a, I_s, v_s \notin v_e)$ on the signal/ noise ratio For the welding belt shape coefficient ψ

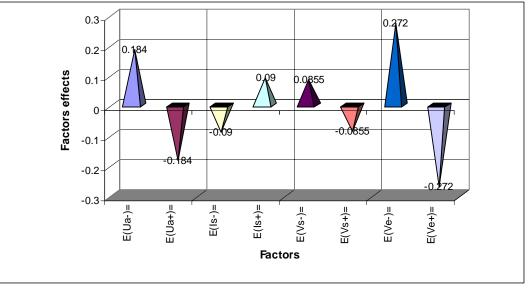


Fig.2 the adjusted technological parameters effects $(U_a, I_s, v_s \notin v_e)$ on the measured Sizes for the welding belt shape coefficient ψ

- In the case of the measured values (see fig. 2) we can see that these two parameters have the biggest values, but in a harder way, that would lead, for a beginner to make errors at the SEF welding system adjustment;
- The other technological parameters have smaller effects on the welding belt shape coefficient ψ In this situation, the technological parameters U_a and v_e must be adjusted so their effects to be minimized to a central value ($U_a \approx 32V$, $v_e \approx 140$ cm/min)

Table 4 WITH THE EFFECTS COMPUTED VALUES ON THE									
ADJUSTED TECHONOLOGICAL PARAMETERS INTERACTIONS									
The experiments	The effect on	the ratio S/Z	The effect on the measured value						
Position number	Interactions	Interactions	Interactions	The measured	The measured				
		S/Z	S/Z [%]	sizes	sizes				
				interactions	interactions [%]				
1_5	<i>I(Ua-Is)-=</i>	-0.111984521	-2.12935	<i>0,9175</i>	<i>6,944182</i>				
2_6	<i>I(Ua+Is-)=</i>	0.111984521	2.12935	-0,9175	-6,9441 8				
3_7	<i>I(Ua-Is+)=</i>	0.111984521	2.12935	-0,9175	-6,9441 8				
4_8	I(Ua+Is+)=	-0.111984521	-2.12935	<i>0,9175</i>	<i>6,944182</i>				
1_3	I(Ua-Vs-)=	0.741256464	14.09476	1,5675	11,86377				
2_4	I(Ua+Vs-)=	-0.741256464	-14.0948	-1,5675	-11,8638				
5_7	I(Ua-Vs+)=	-0.741256464	-14.0948	-1,5675	-11,8638				
6_8	I(Ua+Vs+)=	0.741256464	14.09476	1,5675	11,86377				
1_2	(Is-Vs-)=	1.512476517	28.75927	0,7225	5,468307				
3_4	I(Is+Vs-)=	-1.512476517	-28.7593	-0,7225	-5,46831				
5_6	I(Is-Vs+)=	-1.51248	-28.7593	-0,7225	-5,46831				
7_8	I(Is+Vs+)=	1.512476517	28.75927	0,7225	5,468307				

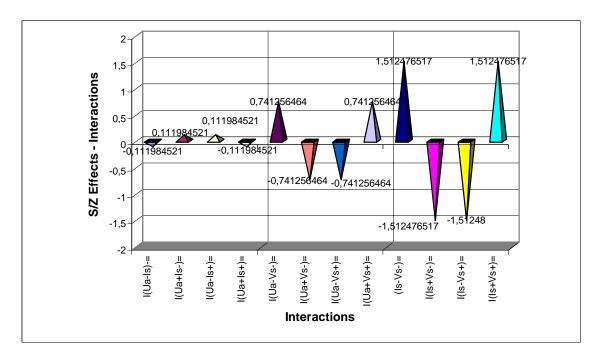


Fig.3 the adjusted technological parameters interactions $(U_a, I_s, v_s \notin v_e)$ on the Signal/ Noise ratio for the welding belt shape coefficient ψ

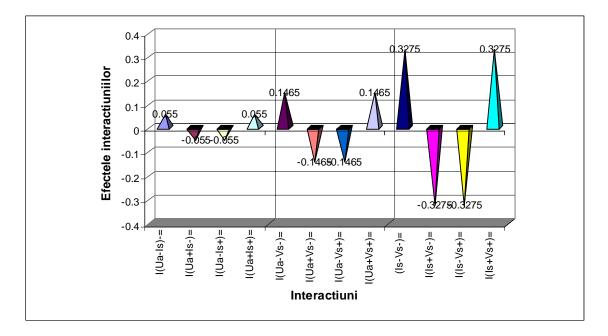


Fig.4 the adjusted technological parameters effects (U_a, I_s, v_s) on the measured sizes R for the welding belt shape coefficient ψ

Analyzing the signal/noise reports and the ones of the measured values for the adjusted sizes interactions (the basic and complementary factors) it results:

- The interactions groups (*UaVs*) and {*IsVs*} have strongest effect on the welding belt shape coefficient;
- These interactions are significant in order to establish a mathematical model in the case of the welding belt shape coefficient (see fig. 3);
- The measured values interactions (see fig. 4) give this information in a obvious way and this means that the classical method leads too to some good conclusions on these interactions and make evident other interactions effects.

The situation leads to these parameters adjustment to their central values (the arithmetical means of the values from table 1) in order to obtain valid solutions.

At the end of our short analyze we may approximate the width value with the equation (1) help:

$$\Psi = 1,906 + \begin{bmatrix} 0,184 & -0,184 \end{bmatrix} U_a + \begin{bmatrix} -0,09 & 0,09 \end{bmatrix} I_s + \begin{bmatrix} 0,0855 & -0,0855 \end{bmatrix} v_s + \begin{bmatrix} 0,272 & -0,272 \end{bmatrix} v_e + U_a^T \begin{bmatrix} 0,055 & -0,055 \\ -0,055 & 0,055 \end{bmatrix} I_s + U_a^T \begin{bmatrix} 0,1465 & -0,1465 \\ -0,1465 & 0,1465 \end{bmatrix} v_s + I_s^T \begin{bmatrix} 0,3275 & -0,3275 \\ -0,3275 & 0,3275 \end{bmatrix} v_s$$
(1)

where: U_a , I_s , v_s , v_e are vectors; U_a^T si I_s^T are the U_a respectively I_s vectors transposed.

Equation (1) can be used to create simulations on the electronic computer to obtain welding duties with valid solutions (almost independent from the noise factors)

CONCLUSIONS

We may say that:

- On the shape coefficient the biggest influence comes from the spring tension and the electrode advancing speed. In order to increase the Signal/ Noise ratio we can select : $U_a = 38 \text{ V}$; $I_s = 575 \text{ A}$, $v_s = 140 = 140 \text{ cm/min}$; $v_e = 140 \text{ cm/min}$
- The interactions are big enough, so these parameters must take the mean value in order to obtain a stable solution.
- The relation (1) becomes :

 $\Psi = 1,9 + 0,184 + 0,09 + 0,08 - 0,272 + 0,146 + 0,32 = 2,45$

These value is between $\psi \in (1,5 3)$, which assure a wide belt for a big enough penetration [3], at the automatically electric welding process under the flux layer.

REFERENCES

[1] *Jacques ALEXIS*: The Taguchi Method in industrial practice – experimental plans, Editura tehnică, București, 1999.

[2] *Jacques ALEXIS* : Plans d'expériences Taguchi - La qualité au moindre coût ; Ethernet, Février 2000.

[3] Ilarion BANU, Nicolae POPA, Adrian BĂJAN: A method of determining the process

function to the flux shielded arc welding for the penetration of the welding seam h_p based on the processing parameters, Oradea 2009.

[4] Jean – Claude HEUGHEBAERT: Metodologie des plans d'experiences, E.N.S.C.T. Fax: 61-17-56-00

[5] *Alain LAMURE: Metodologie des plans d'experiences,* Ethernet 04Extrait Metodologie Experimentale.pdf.