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Abstract. The technological deviations of manufacturing and assembly , lead to the change 

of the kinematic parameters and at further efforts in the kinematic pairs of the cardan joint 

mechanism from the component of the poly-cardan transmissions.The variation of these 

forces is constant in the local systems of reference of the kinematic pairs and harmonic 

varies in the general system of reference in which  one of the axes coincides  with the  

rotation axis.The component of the forces that acts perpendiculary on the direction  this axis 

is a permanent source of excitation, leading to the change of their own frequencies and 

vibration modes at bending. In this paper are deducted the connections between 

technological deviations ,the excitation forces and own frequencies and vibration modes at 

bending and based on the results of numerical application conclusions will be drawn. 

1.  Introduction 

Based on the dynamic model with distributed mass, in the previous papers [1]-[4] were studied the 

free vibrations of the two-shafts transmission with elastic frame, with and without technological 

deviations, were determined the own frequencies and were represented the vibration modes at 

bending.  

Starting from the same model and  the papers results [5]-[7] , the excitations that appear because of 

technical deviations will be stimulated and by using the mathematical model that I will establish in 

this paper will be determined the frequencies and inherent modes of vibration at bending of the 

three-shafts transmission. 
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2.  Technological deviations in plücker coordinates 

The cardan joint mechanism is a particular case of the 4r Symmetrical Spherical Quadrilateral 
Mechanism wchich being  of third family it is multiple statically undetermined. Determination of 

the reactions from rotation kinematic pairs A, B, C, D is done by means of the linear elastic 

calculus using the method of the relative displacements with the expression of displacements in 

plücker coordinates [8].The kinematic pair from A, in the case of elastically linear calculation, it is 

considered fixed and the technological deviation of the AB element, represented in Figure 1, is 

given in the local reference system Bxyz , by the small rotation angle l
B  and by the small 

displacement BBl
B

 . 

.  

Figure 1. The technological deviation of the element AB 

In plücker coordinates [4]-[7], [11] the deviations 
l
B  , in the Bxyz  local reference system is written 

under the form: 

  .,,,,,
Tl

Bz
l
By

l
Bx

l
Bz

l
By

l
Bx

l
B  

     
(1) 

where  Tl
Bz

l
By

l
Bx

l
Bz

l
By

l
Bx ,,,,, 

 
are the projections on the local axis of the vectors 

l
B

l
B , . 

3.  The model with distributed masses for three-shafts transmission 

The dynamic model is carried out on a three-shafts transmission used in the SUV field, whose 

construction model is shown in Figure 2. 

 

Figure 2. The Constructive model 

The constructive solution of the three-shafts transmission is associated with the mechanical model 

presented in Figure 3. In the sections A, E and H are situated the elastic bearings  with the elastic 

constants HEA k,k,k  and the harmonic excitation forces HDA R,R,R  of amplitude HEA R
~

,R
~

,R
~

 

activating in the sections A, E, H. 

 

Figure 3. The equivalent mechanical model. 
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The dynamic modeling with distributed masses of the three-shafts transmission as well as the 

representation of the first two vibration modes at bending is presented in Figure 4. 

 

 

 

Figure 4. The dynamic modeling with distributed masses and first two vibration modes at bending 

Next the notations are used [9]-[11] 

a) iiii F,M,,f  - as the deflection, rotation, deflection moment and the cutting force from 

the current section 

b) HGFEDCBAi ;;;;;;;;  - state vectors, defined by the relations: 
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





    

(2) 

c) yiiii,i I,E,A,x   - respectively, the length, density, area, transverse modulus of elasticity 

and geometrical moment of inertia mainly for the section corresponding to the index 

7,...,3,2,1i   

d) The parameters ii z;  defined by the relations: 

.xz;
IyiE

A
p iii4

i

ii2
i  




     

(3) 

       where p is the vibration inherent pulse. 

e) shz,chz  - sin and cos the hyperbolic functions 

.
2

ee
)z(sh;

2

ee
)z(ch

i
zz

i

zz

i

iii 






    

(4) 

f) )z(f ij  , j=1,2,3,4 the Krâlov functions defined by relations: 
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.
2

)zsin()z(sh
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)z(f

2
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(5)  

g) )z(F i – the Krâlov matrixes defined by relations: 

.
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(6) 

h) , 1  – for diagonal matrixes: 
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(7)         

i) 7,...,3,2,1i,Ri  , the field matrixes of sections, [7]: 

.)x(FR iii

1

ii  


     
(8) 

By assimilating the bearings from sections A, D, H with the joints, results that
 

0MMM HDA        (9) 

and by also taking into account the elastic brackets results
  

HHHEE
s

E
d

EAAA fkF;fkFF;fkF      
(10) 

In the absence of exciting force the obtained state vectors are: 
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(11) 

where the indices  s,d  refers to the left and right sections. 

The equalities results 
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(12) 

that can be written under the form 
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     
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(13) 

By using the notations: 
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the equations (13), can be written under the form: 
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and with the notations: 
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                                        (17) 

where by  mnQ  was noted the zero matrix with cu m lines and n columns, is obtained the 

homogeneous equation: 

    0~
E 

      
(18) 

that accepts the solution different of zero if:  
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   0Edet        
(19) 

equation from which are determined the own pulsations. 

In the case of harmonic excitations from A, D, H with the amplitudes HDA R
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(20) 

it is obtained the matrix equation: 

    F
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E 
       

(21) 

from which results the column matrix of amplitudes: 
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E
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(22) 

4.  Numerical application 

Consider a mobile three-shafts transmission equipping a SUV vehicle whose construction model is 

shown in Figure 3, for the following construction features that are known and  mechanical: 

).m/kg(7800

)m(104AA);m(106,19AAAAA
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
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Based on an algorithm that I will present in future work and a computer program developed in 

Excel or obtained first and second pulsation own value p1=155(s
-1

), p2=1072(s
-1

). Corresponding to 

this pulse graphs were drawn at the bending vibration inherent modes shown in Figure 5. 

  

Figure 5. First and second pulsation own 

5.  Conclusions 
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The mathematical model presented, of the algorithm and of the program developed can be 

determinated the influence of each type of technological deviation an their own frequencies and 
vibration modes at bending of three-shafts transmissions.The matrix approach allows us to directly 

determine the own pulsations and ways of vibration of the three-cardan transmissions, the method 

could be extended also to poli-cardan transmission.  
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